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AFIT/GEP/PH/80D-7

Abstract

The mode eigenvalue equation for an unstable strip

laser resonator is developed from scalar diffraction

theory. The field distributions are expressed as a series

and the integral is then evaluated using a first order

approximation to the method of stationary phase. The re-

sulting approximate closed form is rearranged to form an

eigenvalue polynomial, the roots of which are the mode

eigenvalues. Eigenfunction expressions are then developed

using a second order approximation to the method of station-

ary phase. Modifications to thesr expressions are then

made to account for the presence of uniform gain in the res-

onator.

The results of a computer program using the derived

expressions are presented. Comparisons to previously pub-

lished results are made for the bare cavity case, and re-

sults for the loaded cavity case follow.

X

, w



ANALYSIS OF MODES

IN AN UNSTABIE

STRIP LASER RESONATOR

I. Introduction

Background

An ui;table laser resonator is a resonator in which the

geometric path of a paraxial ray traveling back and forth be-

tween the two mirrors is unbounded in an infinite number of

passes. This is opposed to a stable resonator, in which the

ray path is bounded. Any ray inside an unstable resonator

will eventually take on a direction from which it will not

come into contact with either mirror, and thus leave the

cavity. In this type of resonator, the product of the res-

onator mirror g parameters, where

L

gi - i=1,2

lies outside the stable range of

0 S gg 2  1

The utility or benefits of unstable resonators, for in-

stance large mode volume and minimally transmitting optics

(Ref 10:353), require that some method of mode analysis be

i -



available. Several methods are available, but have various

drawbacks, such as excessive computer processor time re-

quirements, or limited applicability.

Horwitz (Ref 6) developed a method whereby the mode

eigenvalue equation for an unstable strip resonator, mod-

ified from the original, developed by Fox and Li (Ref 4),

was simplified by using first a series of functions found

through asymptotic analysis to approximate the field in

the resonator, and then the method of stationary phase to

approximate the integral. Butts and Avizonis (Ref 2) clar-

ified this approach and modified it to allov- consideration

of a resonator with circular mirrors. However, neither

allowed for the inclusion of a gain medium in the cavity.

Objectives

The objective of this thesis is to develop a computer

code allowing analysis of modes in an unstable resonator

and to then utilize that code in performing said analysis.

The code is to be developed for a strip resonator and ac-

count for both bare and loaded cavity cases.

Assumptions

To facilitate modeling of the unstable resonator, cer-

tain simplifying assumptions will be made:

1. Scalar diffraction theory will be used to describe

the physical situation in the resonator. This is reasonable,

2
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since the dimensions of laser resonators are large compared

to optical wavelengths.

2. The Fresnel approximation to the Kirchoff-Fresnel

formula is valid. Resonator cavity lengths make this an

acceptable assumption.

3. In a Cartesian system, diffraction integrals and

mode eigenfunctions are separable. This allows a 1-D strip

resonator to be utilized in the following development.

4. One of the resonator mirrors is very much larger

than the beam width on that mirror. In other words, that the

height of this mirror be considered infinite. This is not

an impossible physical constraint.

5. The modes in the strip resonator consist of a fun-

damental cylindrical wave modified by a finite number of

diffraction effects. This assumption is supported by early

analysis of unstable resonators. (Ref 9:279)

Procedure

This thesis will start with the Kirchoff-Fresnel dif-

fraction formula and develop, following Horwitz (Ref 6:1529),

the eigenvalue equation for a -trip resonator

1 -it(y- 
)

xg(x) f- Je g(y) dy (1.3.1)
-1



where the eigenfunctions g(x) are the weighting functions

of the basic cylindrical wave assumed to be present in the

resonator, that is, if the total field is described by

u(x) then (Ref 11),

-i TNfx

u(x) = g(x)e (1.3.2)

e-iiTNfx 2  being the phase curvature term of the basis cylin-

drical wave.

The eigenvalues will be found by developing a suitable

relation from the eigenvalue equation. The total field in

the cavity is first assumed to consist of a unit amplitude

cylindrical wave plus a finite series of diffraction sup-

plements. This is stated in terms of g(x) as (Ref 2)

N
g(x) 1 + CnHn(x) (1.3.3)

n=1

This expression is substituted in the eigenvalue

equation and then an approximation to the integral is devel-

oped using a first approximation to the method of station-

ary phase. The resulting relation will allow the eigen-

values to be expressed as roots of a polynomial with deter-

minable coefficients. The roots can be found by using a

general root-finding routine.

An eigenfunction expression may then be found by using

4



the original assumption ie., equation (1.3.3). However,

inherent limitations of the first stationary phase approx-

imation confining applicable x values in this relation

require the development of a better approximation to the

integral. The higher order expression will be developed,

using the higher order approximation to the method of

stationary phase (Ref 1), enabling the evaluation of the

eigenfunctions throughout a continuous range of x values.

This thesis will then seek to modify the bare cavity

expressions to account for a gain medium in the resonator

by introducing a gain factor, e2 L , into the integral

abd by relaxing the unit amplitude requirement on the fun-

damental cylindrical wave.

Organization

The derivation of the basic resonator eigenvalue

equation will be covered in Chapter II. Chapter III will

present the two applications of that equation: calculation

of eigenvalues and evaluation of eigenfunctions. Inclusion

of gain considerations will be covered in Chapter IV and

Chapter V will contain results of the computer code. Chap-

ter VI will include conclusions and further recommendations.

5



II. Development of the Eigenvalue Equation

Chapter II addresses the problem of applying the Kir-

choff-Fresnel diffraction formula to the desired case of an

unstable optical resonator. The development follows that

in Reference 6.

A steady state mode will exist in a resonator when the

field value on one mirror resulting from one round trip

through the resonator multiplied by some complex constant

is equal to the original field value on that mirror. Math-

ematically this can be stated as

yEi(x,y) = E(x,y) 2.1.1

where E is the original field distribution on M2  , the

second mirror, E' is the distribution after one round trip,

and y is the constant, in general complex.

Wave propagation through the resonator can be express-

ed using scalar diffraction theory. Wave propagation from

a rectangular aperture, dimensions 2a x 2c , on one plane

to another plane a distance L away, as seen in Fig.1, is

given in the Fresnel approximation by

eikL a ik
E(X 2 Y 2 ) XeL ff E(xiyl)e TL[(x-x2)+(YI-Y2) 2 ]dxdy

c -a

2.1.2

c .......6
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Figure 1

Since this is presented in a Cartesian system, the

field distribution can be separated. This is done by as-

suming (Ref 4:485-486),

E(x,y) = U(x)U(y) 2.1.3

Substitution of 2.1.3 into the diffraction formula

yields two independent diffraction formulae.

ikL a ik X-2)
U(x 2) i f eU f U(x 1 )e dxj 2.1.4

-a

7



ikL c ik .. ..U(y 2 ) = l~le 2fU(y 1 )e -2 1 y y 1  2.1.=2 ( 2 dy 2.1.5

-c

Consideration of only one of these formulae is equiva-

lent to considering diffraction from a strip aperture. No

generality is lost, however, since the effects of a finite

aperture can be found from the product of two separate strip

cases. Thus the one remaining equation is

ikL a ik2U~x2) - -  fe - TL- ( X 1
- x X 

2

U(x 2 ) X f e U(xl)dxl 2.1.6

-a

Equation 2.1.6 represents propagation from one plane to

another. For this to correctly represent propagation in a

resonator, the phase lag introduced by mirror curvature must

be accounted for.

The phase lag introduced by the mirrors can be express-

ed as a function of distance from the optic axis. This ex-

pression can be derived from the paraxial lens thickness func-

tion, (Ref 5:80), which is

A(xy) = AO- X 2 Y2  1 2.1.7'2 R1 R2"

Where A= thickness, Ao= maximum lens thickness, x and y

are coordinates of the point where the ray of interest is

incident on the lens, and R, and R2  are the radii of

8
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curvature of the lens' surface. In the case of a strip

mirror the lens equation applys if

9

y -k
A0 : 0

giving

= 2

A(X) = R 2.1.8

for the i th mirror. The phase lag at some particular dis-I

tance *from the optic axis x is given by

9



A4(x) =kx
2

= R- 2.1.9

However, since

L
gi = 1 - 2.1.10R

it is seen that

=L1-g i j i

and

1 1-gi.R = - 2.1.11R. L" "

where gi is the g parameter for the ith mirror. There-

fore the phase lag can be expressed as

k X2 1-g 2.1.12

Introduction of this phase lag into the diffraction

formula gives

ikL a

U(x 2 ) A'fT. e - 2 f U(x)

-a

ik[ 2+x 2
2 2x lX2  _X 2 (1 g l) 'X2 2 (1 g 2 )l

e Zdx

10
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ikL a ik--i 2 -2-~g1x12+g2x2 -2xlx2]

U(x2) =yie 
2 fU(xi)e [ dxl

-a

2.1.13

This expression, now modified to describe propagation

of U(xl) from M, to M2  , can be used to set up two

equations: one for propagation from M2  to M, and the

other for propagation from M, to M 2  . Combination of

the two will then yield an expression describing propaga-

tion of a field through one round trip in the resonator.

The one way formulae are

i kL a, ik 22xx
- 1 x +g2X2 - 2

U(X2) = e - U(xl')e- ~, , dx'l

-a 2.1.14

and

i kL T-a2 ikg2 2 +x 2 -2xx2 ]

U(x1 ) = e"  i U (xe)e-2' 2gL l l2  dx

-a 2  2.1.15

If 2.1.15 is substituted for u(xf) in 2.1.14, the re-

sultant expression will give the field on M 2  due to the

propagation of an original field on M2  through one round

trip in the resonator. Substitution gives

1i

-



a 2  aI
u( =-ikL t u

vUT TT)fe -iW /X L fU(xfl
-a2  -a,

ik[gj 2 iX2
- Lix;+g 2x;2-2x'x] - ik[g'x1+g2x2-2x

e dx'e dx'

2.1.16

In the case considered in Fig. 2, the assumption that

M, is much bigger than the beam width on that mirror for

any laser mode that is likely to resonate, allows a, to

be thought of as essentially infinite. Then 2.1.16 be-

comes

a2  0 ik
U(x) eikL f f e 2 4-" g1x 2+gx 2 -2x~x ] "

-a 2 -00

ik X 2- -lg[x1W+92 -2"X21
e U(x')dx'dx 2.1.17

This expression can be simplified by extracting the in-

terior integral

COik [g ix 2+g2x 2_2x1x ]

i 2

e -jglX 2  - dxj 2.1.18

12
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Evaluation of this integral in Appendix B yields

-2 (2gg2-1)(x52+x2
2 )-2x 2x ]

e 2.1.19

Substitution of this for the complete kernel in 2.1.17 in

turn yields

a2
U(x 2 ) = e-ikL 2LXg1 f

-a 2

- - 1-[(2g g2 -1) (x52+x 2
2 )-2x 2 x2]

e Lg 1 [(2gI9 U(x) dx)

2.1.20

To simplify this further, the definitions

2gIg 2-1 - g 2.1.21

and

a2 = F2 - F 2.1.222g _IXL 2g,

are introduced.

Here, g, and g2 are the familiar g parameters

and F2 is the ordinary Fresnel number of the smaller feed-

back mirror. The ordinary Fresnel number is defined as the

additional length per pass in half wavelengths for a ray

traveling from one mirror's center to the other mirror's

edge, compared to one traveling from mirror center to mirror

13



center. (Ref 11:159-161).

The dimensions of the quantities are also scaled such

that a2=1 These modifications yield

-ikU -irrF [g (x 2+x ) -2x2 x2]dxI

U(x 2 ) = e- ikLT I(x;)e 2o dx 2.23
-1

Imposition of the reproducobility constraint, equation

2.1.1, and absorption of the constant eikL into y

yields

1

yU(x 2 ) = /fT U(x;)e - iTF[ g ( X;2+X 2 -2X2x dx; 2.1.24

-1

Introducing the dummy variable y and dropping sub-

scripts and superscripts yields

1

yU(x) = V'TF f U(y)e-ifF[g(x2+y')-2xYdy 2.1.25

-1

To further simplify this equation, the following

quantities are defined

Nf = f - 1 2.1.26

and g(x) such that

U(x) = e g(x) 2.1.27

14



Nf is the equivalent Fresnel number of the resonator.

The equivalent Fresnel number can be interpreted as the

additional path length per pass in half wavelengths for a

ray traveling from a mirror's virtual center to the edge

of the next mirror, as opposed to a ray traveling from the

virtual center of one mirror to the actual center of the

next (Ref 11:159-161). The virtual center is defined as

that point from which a cylindrical wave would eminate if

that wave were to be reflected from a feedback mirror, and

then return to the original mirror in the same form as when

it left (Ref 9:279-280). That cylindrical wave is then as-

sumed to take the form

e 2.1.28

and the entire wave function is assumed to be based on that

wave, stated by 2.1.27. Substitution of 2.1.26 and 2.1.27

into 2.1.25 yields

FEM2 l_ 2 1 2 2- 1
-i 2 ( ) x -irrFy T-)

yg(x)e i  m- x  IT f g(y)e 2m2

-1

-iTrF [g(x 2+y 2 )-2xy]
e dy 2.1.29

After some manipulation, detailed in Appendix C,

15
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2.1.29 simplifies to the final form of the resonator inte-

gral equation

1 i t x(y 2

yg(x) = v-it/rm f g(y)e dy 2.1.30

-1

where

t = iTmF 2.1.31

and if

= yV'I 2.1.32

1 it(y- ) 2
g(Y 2.1.33

xg(x) = /TTT e g(y) dy

-1

16



III. Determination of Eigenvalues and

Evaluation of Eigenfunctions

Chapter III is concerned with solving the resonator

mode eigenvalue equation and with developing expressions

for the resulting eigenfunctions. The eigenfunctions are

most desireable since they will ultimately express field

values across the output mirror plane.

Approximation of Eigenvalue Equation

The eigenvalue equation that must be solved is

1 it(y-mXL) 2

Xg(x) = f f g(y)e m dy 3.1.1
-1

where g(x) is the quantity multiplying the primary cylin-

drical wave expressed as a function of normal distance from

the optic axis.

Now it is assumed that the field on the mirror before

the round trip, U(y) , consists of a unit amplitude cylin-

drical wave plus an infinite series of edge diffracted waves

given by some functions H n(y) (Re '-2). In terms of g(y)

this is stated as

g(y) : 1 + I cnHn(y) 3.1.2

n=1

17
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The physical basis for this assumption is that the

original field on M2 will consist of that primary cylin-

drical wave which makes the round trip unchanged plus

other contributions which are the diffraction additions to

that wave from previous reflections. To make this viable,

however, it is then assumed that the series terminates when

eventually some function HN(y) is the last contribution

that has any new effect on the field, or that H N+1 (y) is

constant. If the resonator is thought of as an infinite

lens train, the mode components between the last two lenses

will consist of the basic cylindrical wave and one diffrac-

tion effected wave from each preceeding lens group. The

series terminates when the consideration of another lens

group, farther back, adds no more new information to the

final mode. Then the addition of one more diffraction

effected wave would add only to amplitude, and not change

the shape of the total wave. 3.1.2 then becomes
N

g(y)=1+n1 cn H (y) . A good approximation is to let (Ref.

6:1533)
N > ln 25ONf 3.1.3

l n m ". •

and the quality of this approximation is displayed in

Appendix E.

When 3.1.2 is substituted into 3.1.1, the result is

1 N
Xg(x) = iJ j1+ cnHn(Y) e mdy 3.1.4

-1 n=1

18
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Some method of approximating this integral is needed.

The method chosen is the method of stationary phase. This

method states that an integral of the form

feitp(Y)q(y) dy 3.1.5

a

can, when t is large and q(y) is slowly varying, be ex-

pressed as a series, the first two terms of which are ap-

proximately (Ref.2:1073).

e-i/4q(yo)e-itp(yo) V/ 27

e itp(b) - q e itp(a 3.1.6

where yo is the point of stationary phase, ie.

P'(Yo) = 0 3.1.7

To utilize this however some explicit form of Hn(y)

is needed. The form used here is the same as that develop-

ed by Horwitz through asymptotic analysis of the resonator

integral, 2.1.33. The form is as follows:

Given the functions (Ref 3)

F(x,t) 1 eit(x) 3.1.8
2T t 1-x

19
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G(x,t) - 1 e
i t ( l + X ) 2

-~xvii 3.1.92VT 1+x

the functions Fn(X) and Gn(X) are formed such that

F (x) = 3.1.10

n F(- mn

and

G (x) = 3.1.11n m nti

where

m= m- 2 k  3.1.12

k=0

and m is the magnification.

It is therefore seen that

it(l-I - 2/mn_
" ' n - I

F n(x) - VnYle n 3.1.13

2V 1-x/mn

and

it(+ )2/mn-i

G n(x) - n-1 e mn 3.1.142l- +x/m n

H (x) is then assumed to be some combination of thesen

functions:

20



c nH n(x) = an F n(x)+bn G n(x) 3.1.15

Since the cavity under consideration here is centered

on the optic axis, symmetry dictates either odd or even field

functions. To get an even field function, then it is assum-

ed that Hn (x) is even. Odd would require that Hn (x) be

odd.

It is seen from 3.13-3.15 that H n (x) can be made even

if a n=b n  . So, if

a n =b n 3.1.16

then with

c n =a n =b n  3.1.17

c nH n(x) = c n(Fn (x)+G n(x)) 3.1.18

and

c nH n(-x) = cn(Fn (-x)+G n(-x)) 3.1.19

However, since

F n(x) = G n(-x) 3.1.20

c nH n(-x) = c n(Gn (x)+F n(x)) 3.1.21

= c nH n(x) 3.1.22

21
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Thus, H n(x) is an even function.

Similarly, H n(x) can be made odd by assuming

a= -b 3.1.23

and that

a = -b = c 3.1.24n n n

it is seen that

c nH n(x) = Cn (Fn (x)-G n(x)) 3'1.25

and

c H (-x) = C (F (-x)-G (-x) 3.1.26
n n n n n

= Cn(Gn(X)-F(X)) 3.1.27

= -c H (X) 3.1.28
n n

Thus H (X) is an odd function. One additional assumption

is that in the odd case, the amplitude of the cylindrical

wave is zero. This is necessary for the field function to

be odd.

In the following development, the even parity case

will be the one dealt with. The odd parity equations can

be found from those for the even case by deleting the lead-

ing term in eq. 3.1.2 and following the procedure as above.

Therefore, the eigenvalue equation to be solved is
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xg(x) /= F eJ

1+ (an F n (y+bnGn(y))j dy 3.1.29

n=1

Substitution of the actual forms of the functions allows

explicit forms of p(y) and g(y) found in 3.1.4 and

3.1.5 to be found. Employing equation 3.1.5, according to

Appendix A allows the following first order approximation

Xg(x) =1+Fl(x)+G1 (x)

N

+ L (anF n+(x)+bnG nll(x))
n=1

N

+F,( x 11(aFn(1)+bnGn(1))

n=1

N

+Gl(x)E (an Fn(-1)+bn Gn(-l)) 3.1.30

N N
=1+H-I(x)+Z cnHn+1 (x)+H1 (x) EcnH n(1) 3.1.31

n=1 n=1

N
= X(1+ EnHn(x)) 3.1.32

n=1
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In the odd case this would become

N N NA xCnHn(X) H 3.1.33

n=1 n=1 n=1

The Eigenvalue Polynomial

In the even parity case, the eigenvalue equation is

approximately given by

N N
X(+ cnH (X)) 1+H1(x)+'c nH n=l(x)

n=1 n=1

N
+Hl(x)Z.cnHn( 1) 3.2.1

n=1

The relation between X and the known functions is

constructed in the following manner:

First, the coefficients of terms in 3.2.1 involving

Hn (x) , where n t 1 , are set equal:

Xc n+1 c n 3.2.2

It follows that

C
n 3.2.3Cn+1 X

C 1 C 3 2 C1  3.2.4

24



and generally it is seen that

n+ n 3.2.5

In other words

c = c X 3.2.6

= CN xN 3.2.7

This in turn implies that

cn=C N x N-n 3.2.8

Equating coefficients of H (x) now yields

N

Ac, = L+E c n H n~)3.2.9

n=1

Substituting for c n and c, according to 3.2.8, gives

N

XcNX N-1 = 1+ LCNX N-n H n (1) 3.2.10

n=1

Equating constant terms in 3.2.1 shows- that

X = l+c N HN+1 3.2.11
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c- = CN N+1 3.2.12

H -_N_1 = N 3.2.13H N+I

Substituting for cN in 3.2.10 according to 3.2.13 yields

A(AI)X N-1 N ()'I) N-R
H + Hn(i) 3.2.14

HN+ 1  n H1N+1
n=1

or
N

X N (X-1) = HN+ 1 + (X-i) L-XZN-nHn(1) 3.2.15

n=1

which is a polynomial in the complex variable A . Its

roots can be determined from any root-finding subroutine,

since its coefficients all involve known quantities such as

H n(1)

or the constant

HN+1

It is from this polynomial that the mode eigenvalues of the

resonator are determined. A preliminary evaluation of the

eigenfunction for a particular mode can be made by substi-

tuting into equation 3.1.2 the values for cn , which are

given by
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C n = C N-n

= (X-1) Nn 3.2.16
HN+I

However, due to the singularities in the first approximation

to the integral, 3.1.6, whenever x approaches Yo , this

particular expression for the eigenfunction is invalid. This

problem will be remedied in the next section.

The odd parity solution is given by 3.1.33, and the poly-

nomial development for that case is as follows.

After equating the coefficients of H (x), n f 1, it isn

seen that the same relations arise as 3.2.2 - 3.2.8.

Equating coefficients of HI(x) indicates that

N
Xc = -cn H n( ) 3.2.17

n=1

Equating constant terms indicates that

0 = CNHN+ 1

This is only reasonable since the condition imposed on N

namely that HN+1 is a constant, also implies that

FN+1 = Constant = GN+1 3.2.18
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and since

HN+ 1  F N+1 GN+1 3.2.19

H N+1 =0 3.2.20

This indicates that c is completely arbitrary since there

are no other restrictions imposed by either 3.2.8 or 3.2.17.

If cn  is indeed arbitrary, and

c = CNX N - n  3.2.21

then c can be chosen such that

Cn n = CNX N = 1 3.2.22

leaving the relation

Cn = X-n 3.2.23

which can be used in the limited range eigenfunction ex-

pression for the odd parity case.

The polynomial is developed by substitution for c n

of 3.2.8 in 3.2.17 giving

N

Xc1 = CnHn(1) 3.2.24

n=1
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N

XCNX N - 1 = I NXCN-nHn(l) 3.2.25

n-1

N

X N = 1xN-nH n ( 1  3.2.26

n=1

Development of Eigenfunction

Expressions Valid for All X

To develop an eigenfunction expression valid for all

x , it is first necessary to return to the original equa-

tion, 2.1.32, which is

Xg(x) = j g(y)e dy 3.3.1

-1

Since tile eigenvalues are known or can be determined,

it can then be said that

1 rN -iy.... 2
g I) = 1 +nY)H e dy 3.3.2
gvX) = f 1  cn2n

-1 n=

One might question the validity of this expression, since

A was determined from the first order approximation. How-

ever, that previous approximation yields perfectly valid

values for X ,because all that determines the mode

eigenvalue is the field on the smaller feedback mirror,
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where x:l In this region, the approximation is always

valid. Therefore the X's are perfectly valid.

All expressions and quantities on the right side of

3.3.1 are known, and therefore one can once again utilize

the method of stationary phase, but in a second approxima-

tion, yielding an expression no longer as simple as 3.1.6

but one that is valid for all x The higher approximation

to the integral is given by (Ref 1)

itp (b) 2
/ti -2p (b)

S e-itp(b)q(b) p(b) e b

E* p-b)i I- itp(a)

p '(b2 p a

q(a) Cftp " (aT e

E '() p (a "T3.3.3

wnen yo is such that

Yo < a 3.3.4

and
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e- r q(yo) e-itp(yo) 2IT

3.3.5

when ye is such that

a 5y b 3.3.6

and

' t ~)
2

t

eitp() e pE1. a1~)Pb LI

3.3.7

when yo is such that

Yo b 3.3.8
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Here, E* is the complex conjugate of the Fresnel integral.

In both the even and the odd cases the integral

m b ted. S d f e
V'7 f (aI>n Fn (Y)+bn Gn (y)) dy 3.3.9

must be evaluated. Specific differences for even and odd

cases will be treated later. Manipulating 3.3.5 yields

N 1 it (  X 2
171 f 1 Y-m) (a Fn(y)+bn G n(y)) dy 3.3.10

To make use of equations 3.3.3, 3.3.5 and 3.3.7, it is

necessary to get p(y) and q(y) expressions for the nth

term in the series. Substitution of the explicit forms of

the Fn  and Gn  functions yields an integral of the form

_i t (1_m F) 2/m _

1- ty-) /a mnl e
e- _ty m f n - I e

fe2 -(i 2lt 1 - y
-1 mn

bnn_ e-it(l+y/mn)2/mn' 1
2- 1+ -  dy 3.3.11

mn

where mn has been previously defined in 3.1.12.

Upon consideration of the term involving the a con-n

stants, it is seen that
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2
p(y) = (y-) + MW) 3.3.12

m M-

p'(y) = 2(y- ) n2 1 (1-y_) 3.3.13

m mn-1 mIj mr

p'_(y) = 2 + 2 3.3.14
n-

q(y) = 1 3.3.15
1 _ L_

mn

Solving for Yo yields

Yo M _1 + Yl  = 0 3.3.16

Y n 1m 2n

a x +~j7 3.3.18r

nmn- + - .3.n

Similarly, for the part involving the bn  constants

it is seen that
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p(y) = (y-L) + 3.3.19

p-(y) = 2(y- x) + 2 1 3.3.20

n --- i T  (1+ ) 3

p'm(y) = 2 + 2n2  3.3.21
Mm mn-1

q(y) = 1 3.3.22
I +--

mn

Solving for Yo , it is seen that

x 1 + - Y
Yo + -- 0 3.3.23Y o- + mnn_

1-

Yo( + inm- nn 1 3.3.24

b 1 1 _ 1 3.3.25
Yo mnmnl + 1

m2 nm n-i

These expressions can now be substituted into the over-

all approximations to the integral. However, in evaluation

careful consideration of the Yo values must be taken, in
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order that the proper form of the approximation is used.

This is rather complicated, since there are two yo's .

one for the an term, and one for the b term.

In order to simplify things, let

a ~ i7 et[(1-2)2+( 1-1 I) /mn] _______a in - 1 1

" m2n mn. 1
1 2

+4-t n mn - -1+ +

-e m ,4t n[1 mn - mn1i .[E 2 1)

2 a ~n n- 1
m nn. 1Vn-1 2 i-7J

2t(

4itj-X-(-lmI--h) mnmnl]/ 4"1+i/m2nmn 1

E* t I-)- 2 n 1i Ii
m2 n T mmn- mIT

mn-)

- ATERM 3.3.26
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when yo < -1 . When yb is in the same region, let

2 12-t I1x  + ( 1+ -7 m

b~ I mnm)Yl-1v -1Tt{ - 5.2t(+, )

4*1 2n
4i t [l-X+(1+ 1m-I) mnon/ 4"1+ 1~n

*e L i n-1

E t[ ix)+( 2 21+---+]
2 T - 2 t (1

-
- 1)

- 1 + I 1

4it -- x+(1-1m--T)/m im n 4-1+ nmnT

: BTERM 3.3.27

Then, it can be said that
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1 t x 2

e m (anFn (y)+bnG n(y)) ATERM + BTERM 3.3.28

provided that both points of stationary phase are less than

negative one, the lower endpoint of the integral. Therefore,

in that region, 3.3.10 is equal to

N
V1777 {ATERM + BTERM} 3.3.29

n=1

However, if one or both points of stationary phase fail the

magnitude condition, the expressions ATERM and BTERM can be

corrected through some slight modifications. If ya > 1

or yo . -1 all that has to be done is to change the sign

of each 1-i term. If either yo is such that2

-1 < y < 1 3.3.30

I-i

then two things must be done. First, only the second 1

term requires a change of sign. Second, the stationary

phase point contribution term must be added to the entire

expression.

For the a term, this contribution isn}

an Vrmn - 1 / 4  eit Y( a x n a

2/T 1-Y/mnmn-1

3.3.31
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and for the b term the contribution is
n[ax YO]

bn n . 1nT eiT/4 -it (y 0- m++ m ) 2In-1

2v'I -b yb/mn e  t(2 )

+ m2 _nmn

3.3.32

These expressions are added to ATERM or BTERM, which-

ever is required. In this way the complete expression for

the integral

N 1 -it(y-X-)2
1 E e (anFn(y)+b nGn(y)) dy 3.3.33

n=1 -

can be stated.

However, in the even parity case, one more modification

must be made. The term involving the '1' must be added to

the expression. Explicity, that term is

1 e dy 3.3.34

From this it is seen that

p(y) = (y - 3.3.35

m

p'(y) = 2(y - 3.3.36
m
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p =(y) = 2 3.3.37

q(y) = 1 3.3.38

and

= 3339
Yo - m

Substituting into 3.3.2 for Yo <- -1 gives

[-it(1-)2 it/4{4(E(1L) E* 1 i
-e v'T 7T e H-2( - -

-e't(- VT -etf (l-T -2( -) -2l-

3.40

If Yo - 1 , once again, all that needs to be done is to
chane th sin ofthe1-i

change the sign of the terms. If Yo is such that
3.3.30 is satisfied, then only the second term is

2
changed in sign and the stationary phase point contribution

term is added. That term is given by

e -iiT/4 7mt 3.3.41

Thus, the higher order approximation expressions for

the eigenfunctions

N 1 2it Y-mx- 2

1 rv'lTr E etY (1+anFn(y)+b G (y)) dy 3.3.42
n=1 n
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in the even case, and

N 1 it(y- X
1 rit-7 - T E e m ( a n F n ( ) b G ( ) y3 3 4

n=1 I

in the odd case are expressed, per 3.3.2-3.3.4. These ex-

pressions are valid for all x . In this way, the fields

across the output mirror plane can be evaluated. It fol-

lows that intensities are then given by

I = E*E g*g 3.3.44

where E is given by the eigenfunctions.
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IV. Modifying the Expressions to

Account for Gain

Chapter IV addresses the problem of generalizing the

previous development so that the expressions can account

for the presence of gain in the resonator. It is noted

here that the method set forth here is not the only way

to include gain in mode analysis (Ref 8).

In this thesis, the method taken to include gain in

the preceding development will ,-equire two changes in that

development. The first is that the fundamental cylindrical

wave is no longer assumed to be of unit amplitude. In the

even case, to which consideration will be limited, g(x)

is then assumed to be of the form

N

g(x) = h + c nH n(x) 4.1.1

n=1

where h is the amplitude of the basis wave, in general not

equal to 1, which will be determined later. The second mod-

ification made is to include a gain factor, e(y)L in

the kernel of the diffraction integral. The integral equa-

tion then becomes

1 _i t(y_2 )2

xg(x) = E /'7e2 9(y )L e m g(y) dy

4.1.2
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N -it(y- )2 N

X(h+i]cnHn(x)) = /-7 f 2(y)L e m (h+ cCnHn(y))dy

n=l -1 n=1

4.1.3

The best value of h can be found from a relaxation pro-

cess wherein gains are assumed to be equal to losses. First

however, the equations require a round value as a starting

point.

To determine that rough value, it is assumed that

there is a uniform intensity across the laser cavity, in

particular, at the output plane. Thus, the gain there is

affected in a similarly uniform manner. If the gain med-

ium is homogeneous, then

g(x) 0 = 4.1.4
1 + 2I(x )

Isat

where go is the small signal gain, and I sat is the sat-

uration intensity, both determinable from actual laser

parameters. I(x) is multiplied by 2 since there are in-

tensity contributions from two waves, one propagating in

each direction.

If the uniform intensity across the feedback mirror is

if ,then the feedback power is given by

Pf = I f.2ad 4.1.5
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where 2ad is the mirror area.

After one round trip, the power would be

Pr = Pfe 2 L  4.1.6

and the round trip intensity would then be

Pr 4.1.7
r 2mad

since the area of the beam is now increased by the magni-

fication (neglecting diffraction). In a steady state sit-

uation, I r must equal If , and therefore it follows

that

pf 2gL I f2ade
If = r =mad 2mad 2mad 4.1.8

and thus

m = e2gL 4.1.9

2gL = In m 4.1.10

Substituting 4.1.4 for g , it is then seen that

In m = 2L 1+ 4.1.11
1sat

1+2I(x) = 2grL 4.1.12
Isat In
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I(x) = -2o 4.1.13I sa t  \In m " 2 .11

= g0L 1 4.1.14
In m 2

This ratio is the ratio of the intensity on the mirror to

the saturation intensity, and it will be considered as the

relative intensity of the fundamental cylindrical wave.

Therefore,

h 4.1.1in m 2 .11

in a first approximation. This will give a rough starting

point for h *from which-the equations can begin.

Considering the new integral equation, 4.1.3, in

light of the first stationary phase approximation, it is

seen that a term has been added to the various q(y)'s

From the approximation it is then concluded from the re-

sults of Appendix A, that

N

X(h+c nH n(X)) -F he2  + h e  H l(x )+ E- e 29 y a a n F n+ l(x)

n=1

NN N2g b(x) 2-C1n )

G'-b G (x) +F (x)lc H Me Cnlng( H (-1)
rdn n+1~x 1\i n n n n

n=1 n=1 n=1

e2g(-l)L 4.1.16
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Since the intensity profile is even, in this case it is as-

sumed that the gain function g is even too, and the ap-

proximation then simplifies to

X(h+c nH n(X)) he2g/(y)L +he2(1)LH

N - an~ ~ N eZ(b)x
+Le 2 ( y o ) (x) +E e'-9(y a n Gn+ I ~
n=1 n=1

N
+Hn(x)e2g(1)L E cnHn(1) 4.1.17

n=1

Equating coefficients of H (x) , n 1 shows that
n

ACnl= ane2g(yo)LFn (x)+bne2 g (y o)LGn (x) 4.1.18

a and b
However, yo yo themselves are now functions of x

and therefore, the sequential arguments leading up to an

eigenvalue polynomial can no longer be made.

In order to build that polynomial, one more simplify-

ing assumption is made, that being whatever intensity fluc-

tuations present across the output plane exist, their ef-

fect on the gain is negligible. The gain factor is then

assumed to be a constant, for all points across the reson-

ator.

Defining the gain factor

= e2I L  4.1.19
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where g is given by 4.1.4, then, the equation becomes

N N

n=1 n=1

N
+H, (X) 1 c nH n(1) 4.1.20

n= 1

Equating coefficients of H n(x) now gives

c 4.1.21

Ic2  c c1  4.1.22

c = L) 4.1.22

and in turn it is seen that

c n = c C(-L) N 4.1.23

Equating coefficients of H (x) yields as before

N
Xcl h + E cn H n(1) 4.1.24

n=1

Equating constant terms shows that

Xh =h +Cc N HN+1 4.1.25
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nhh 4.1.26

=HNc 4.1.27

Therefore, from 4.1.27 and 4.1.23,

cN-n HN14.1.28

Substituting this into 4.1.24 yields

A h(X = h +ZE (~) AE) H (1) 4.1.29
ENln=1 C HN+1

which simplifies to

NN N-n
(-)= FHl +(X-0) H.. H(1) 4.1.30

n=1

and the polynomial is then given by

N
X ~ N(_& N+lH N++(A-F)ZEA N-n N n-NH n(1) 4.1.31

n=1

N
-N+ 1 HN1(0 E -nHn(1) 4.1.32

n=1

The roots of this polynomial can be found using the

same method as before, which will then be rough approximations
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to mode eigenvalues. If the model is to be correct for a

steady state resonator, gain should just balance loss in

that resonator, implying that

u-(x) = u(x) 4.1.33

and therefore

y = 1 4.1.34

If y=l , then from 2.1.32

X = V-M 4.1.35

Using this condition, 4.1.35, then h can be modified

until the lowest loss mode has an eigenvalue equal to F .

The value of h that allows this should then be the most

reasonable value of h

When h is found, the proper gain factor is in turn

found by substituting h 2  for the intensity ratio in 4.1.4.

To extend these solutions beyond the shadow boundaries,

one merely has to multiply the constants a and b inn n

the expressions derived in the last section of the previous

chapter by K , and change the constant factor to h
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V. Results

Implementation of Code and Result Check

The expressions developed in chapters three and four

were incorporated into a CDC Fortran IV program, BARC, which

was organized into two basic sections. The first section

included development of the coefficients of the eigenvalue

polynomials 3.2.15 and 3.2.26, the computation of the roots

through IMSL routine ZCPOLY, the computation of the weight-

ing constants c according to 3.2.16 and 3.1.23, and then
preliminary eigenvalue expressions based on 3.1.2. The

second part, in a separate subroutine, implemented the ex-

pressions developed in the third section of chapter three:

the eigenvalue expressions valid for all x . The program

was then run for various cavity parameters and the results

were compared with the results of other programs (Ref 6:1536;

Ref 8:239).

Table 1 represents a comparison of eigenvalue moduli

resulting from the program developed in this work, and

those from the Moore and McCarthy program.

These results are for a cavity with magnification of

2.9 and an effective Fresnel number of 16.4 . The solu-

tion compared is that of the even parity case.

It is seen that the two codes predict modes with very
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TABLE I

Mode Mod BARC Mod m&mc

1 1.040105 1.040105

2 ..625501 .625501

3 .606668 .606668

.4 .496561 .496561

5 .467285 .467285

6 .157664 .139999

similar losses, since

A*X
loss = 1 - r 5.1.1

m

and the X*X values are all very close.

Figures 3 through 8 are included to show results of

eigenfunction intensity plots over similar ranges for the

Moore and McCarthy program and program BARC. Figures 10

through 15 show comparison between BARC's results and those

published in reference 6 (Ref 6:1536-1539). In both cases,

through visual comparison, program BARC produces results

that are very similar to results from previous methods.

This indicates that BARC produces valid results, at least to

the extent that the previous methods are valid.
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Bare Cavity and Gain Results

After the validity of the code was ascertained, the

code was modified according to the expressions generated

in chapter four. Figures 14 through 21 illustrate results

obtained for a bare resonator of magnification 2.9 and

equivalent fresnel numbers of 15.863 and 16.4 . These

parameters are chosen to facilitate mode separation com-

parisons later in this section. Figures 22 through 29 il-

lustrate results of a loaded cavity of the same configura-

tional parameters but containing a gain medium of small
-1

signal gain 5%cm and cavity length of 200cm. This

group of plots allows comparison between bare and loaded

cavity cases. It is seen that this particular resonator

model predicts that loaded cavity modes have nearly the same

intensity profiles as bare cavity modes, differing only by

a scale factor.

At first glance this seems reasonable, since in the

bare cavity case, the whole eigenfunction was based on a

wave of unit relative amplitude, and slight modifications

on that wave by diffraction supplied by the oscillatory

functions Hn (x) . In the loaded cavity, the eigenfunction

is also based on a wave modified by the same functions, only

the relative amplitude of that wave is no longer unity.

Thus it seems likely that the profile would look moderately

similar in both cases.
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In closer analysis, the mode for the bare resonator

has elgenfunctions given by this expression

N
b 1+cb~H(x) 5.2.1g (x)= + nn

n= 1

while the loaded case has eigenfunctions given by

N
g L (x) =h + CL H (x) 5.2.2

n=1

Similarly, the expressions for the weighting constants are

Cb =(X-1) XN-n 5.2.3n H N+1

C L = (X- ) h (A,)N 1 5.2.4n H 1+

the eigenvalue polynomial in the loaded case is (4.1.32)

N
X N (X_ = N+l1H +1+ (X-0)EXN-n Cn H n(1) 5.2.5

n=1

Dividing through by ~N+1 yields

N X-N -
Q~) (T .1) = HN ~ 1) X 5.2.6

n=1

which becomes identical to the bare cavity polynomial (3.2.15)
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as { 1 . This condition will be fulfilled when h , the

intensity ratio, becomes very large as seen from 4.1.19 and

4.1.4 . In turn H is then seen that, as ,- 1

C n L C n b 5.2.7

and

g L(x) hg b(x) 5.2.8

From this it is concluded that in the well saturated case,

or when the ratio of the actual intensity to the saturation

intensity is much more than one, the field distributions

and hence the intensity profiles will equal those of the
2

bare cavity case multiplied by h and h respectively.

Tables 2 and 3 are presented to illustrate and compare

mode separation properties of a loaded and a bare cavity

for three different equivalent Fresnel numbers. The para-

meters chosen were a a magnification of 2.9 and Nf 's of

16.874, 16.4 and 15.863. These were shown in reference 6

(Ref 6:1534) to be points of least, greatest and then least

loss and next to lowest loss eigenvalue moduli. It was

thought that since the lowest loss mode eigenvalue was forc-

ed to the same constant value at each Fresnel number, negat-

ing any quasiperiodicity, the higher loss modes might also

lose quasi periodicity. The numbers presented show that the

higher loss modes do maintain their quasi periodicity.
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=51

TABLE 2

BARE RESONATOR Mod (x)

Mode Nf=15.8 6 3  Nf=16. 4 00  Nf=16.8 74

1 0.8543652 1.040102 0.8922496

2 0.8508141 0.6255715 0.7785354

3 0.5385818 0.6067205 0.5400256

4 0.5049350 0.4966156 0.5290538

5 0.4737932 0.4673182 0.4752758

6 0.1718837 0.1646309 0.1593562

TABLE 3

LOADED RESONATOR Mod (x)

Mode Nf=15.8 6 3 Nf=16.4 Nf=16.874

1. 1.702922 1.702965 1.70294

2 1.695844 1.024215 1.485906

3 1.073502 0.9933517 1.030688

4 1.006437 0.8130828 1.009747

5 0.8718129 0.7651157 0.9071073

6 0.3425989 0.2695415 0.3041459

The h's required to adjust X to %/iii were 2.6899

3.1051, and 2.5979 for Nf=15. 8 63, 16.4, ard 16.874 respectively.
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VI. Conclusion and Recommendations

Conclusion

The primary conclusion of this thesis is that pro-

gram BARC, written according to expressions developed

along Horwit'z analysis, produces valid results. The pro-

gram allows analysis of even and odd parity mode solutions,

more general than Moore and McCarthy's program, and also

allows field calculation beyond the shadow boundary.

Incorporation of gain considerations into the program

to allow analysis of a loaded strip resonator has been done.

After modification the program produces results from which

a second conclusion can be drawn, that being, for this par-

ticular model, mode intensity profiles in a loaded strip

resonator are essentially the same as those predicted for a

bare strip resonator. It is also concluded that mode losses

as function of equivalent fresnel number continue to exhibit

quasi periodicity in the loaded case.

Recommendations

The computer program, as it stands, predicts some very

basic results about modes in an unstable resonator. There

is no doubt that the scope of the program and the model upon

which it is based can be broadened considerably. As it

stands, it could be used to examine a full, or more complete
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range of resonator parameters either loaded or bare.

The program should be used to explore mode separation

in the loaded cavity case. Mode separation could be ex-

amined for a range of Fresnel numbers as has been done for

bare cavities. (Ref 6)

The model given here could be modified to account for

a non uniform gain function. To do this a new series of

H n's might be developed through asymptotic analysis of the

gain-modified kernel. Another method might be the use of

matrix methods to solve the eigenvalue equation.

This existing method could be applied to resonators

with circular mirrors per Ref 2, and gain then included

in that case.
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Appendix A

This appendix will employ the stationary phase approx-

imation to simplify the resonator integral equation into a

workable expression. The derivation starts with the func-

tions.

F(xt) -I e - it( l x) 2  Al
2 vri-- l-x

and

G(x t) -1 e-it( l+x) 2  A2
2 v/iT I+x

These are modified by letting

F (x) = F(xT t) A3
n mn- 1

and

G n(x) = A4

where

mn= I m-2 K A5

K=O
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and

m = magnification

i /

Thus it is seen that

F (x) = -1 e it( l x/m) 2  A6

F2 (x) -,JTI=+m e-it( l x/m 2 )2/1+1/m2  A7
2 i t 1-x/m 2

and in general that

e ~~ it(l'x/mn)21mn-I

F (x) = e A8
n 2 /T- 1-x/m n

and similarly

G W e -i t(l+x/mn) 2/m n-1A
Gn(x) :~ -mn1e A9

2niir- 1+x/mn

Now, it is recalled that the working form of the inte-

gral equation is

-I
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In the even part

N

f(x) = 1+ (anFn()+ ~) All

n=l

All is substituted into the integral equation, which now

becomes

X(l+E{a nF n(x)+b n Gn (X)}

-TT f eity/) (1+E{an F n(y)+b nG n(y)}) dy A12

-1

When expanded once, the right side becomes

1 N 1

)F,/T f et(x )dyf ZT f eity/)
-1 n=l -1

(anFn (y)+b nG n(y) dy A13

The first term is called 10 Then

4:t f eitYxm dy A 14
-l

This is now considered in light of the first order approxi-

mation to the method of stationary phase which states that if
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b

I=f q(y)e itp(y) dy A15

then

I e111r/ 4 q(yo)eltP(YO)2r

Vtp 7-(Y o7

T iPb - (ay it)) A16

Where yo is such that

p,-(Yo) =0 A17

It is seen that

q(y) =I A17.il

p(y) = (Y-x/m)2  A18

p'(y) =2(y-x/m) A19

p"(y) = 2 A20

And that

Yo =X/mf A21
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Therefore, after substitution,

IDT/ i e+ it lX/M)_2 e 2t(-1-x/m) A2 2

iieit(_X/M)2 it(-1-X/M)2

YiT e-i~r/4 + ~ 1T e x/ + ei(+/ A23
et1x/m) ]+

However, since

e 1TIr/ 4 1 = -11i(-)A24

=1 A25

Then

10 1+ i Fe-it(iX/M)2 + e- 1(+X/M) A26

+iv, [e-it(1-x/M)z e-it(1+X/M) 2 A2
2 2/T 1-x/m+e 1+x/m ]A2

Since i ri = (i-1)//Z , and -1/v r i1)/ it is seen

that however, iTi V'T = 1

10 1 - 2 e- eit(1_X/M) 2 + e- it(l+XY'M) 2] A28

It is now easily see!1 that

lo 1+Fl(x)+Gl(x) A29
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The first term in the sum of integrals is now called Ii:

1

= tiT/T f eit(YX/M)2 (alFl(y) + b1Gl(y)) dy A30

-1

Explicitly, this becomes

1 -ial e~it(l_y/m) 2  _b

= 7 f 1-y/m 2 Ti

Upon searatio the risult i

1

I~ e= dyt7-f2 vriTt 1-y/m d

b e -it 1(ly-/m)2+(yx/m) 2

+/ - +y/m A32

Upon consideration of the first part of this, it is

seen that

q(Y) = 1-y/m A33

p(y) = (l-y/m) 2 +(yx/m) 2  A34

P,(Y) -2 (I-y) + 2(y- ) A35

m m m

= + 2 A36
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Solving for Yo

0 =-2 + 2.+ 2y -- A37

m m m

1 = - + A38
+ X)

Yo = A391
+m

These expressions are now substituted into the first part

of A32 to get

-a vf 1+t[ 1 M ~ m(+ 1+1 i~ .)J-a 1 Te

it(____ 2__ 1_1__2_ eit(1+.L)2 +(_1J_))

-e m -t-7

+ e _40.. . ..1t+2(I4x

Considering the second term of A32 shows that

q(y) A41q() +y/m
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p(y) = (I+) +(y-.) A42

p-(y) = (1+m.)+2(y-x ) A43

p-(y) = 2 + 2 A44

and solving for Yo , the result is

0 = 2y + + 2 yo - 2x A45

1 0 x 1 A46Ym 1 m m

x I .A47

Substitution of these expressions into the second part of

A32 results in

-u -t2+X

7r m x +
TrbT e 1 + 1 (2L911m

1 +I)2 + 1n - t 1_-1 nI2

+ *2 e 2e A48

i mm) m n in
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Considering the denominator in (A-40)'s stationary phase

point contribution, it is seen that/,,Ax . x+1
1- + = 1 A49m + (m+-).m

m mm

And similarly in (A-48)'s stat phase point cont, it is seen

that

1+ I1 x 1 x-1 A50

1+-2 (m1)m m

Also, it is seen that the argument of the exponent in A-40's

stationary phase contribution can be sirplified as follows

(~ 11 X_ A51
11+ (+1 l~+ml1X+) A52

_ __V/x 2_k A5
/+=/ m ) \+,_=

m2+x1 ~2+ 1.. ..22 A54
1 m m m2+1 2#

1
(m2_x) 2+Im(x+l )_x(m+ii"j )2A532+

+.j m M
... ... i"'i . .. r ... -- -- r-' ll lil i... ? .1ii i li



(1_ -r)2 ( m + ) 2
2 

I
+ A56

I1-X-z) 2 2 (I-L 2 2
= F + m A57
(1+_1_2)" (I+l---

m
i7= A58

- 2T A59
1+1

In A48, the exp argument in the stationary phase point con-

tribution can be simplified as follows

+ 1 1(-1 + x 1- -X A60l+j-jjT1-

-12 + 1 m A61

m x-m-mx- X2
S2+ ) + mz+lm 

A62

m + m + A63

X x 2

+ m + rn 
A64( I+ml.z) (mm+ 1-

1 m +
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x 2 x 2

1 +m m 1A65
( 1++X x2 ) 1+ x 2

m A66

1 1
(1+-2) l +1

Substituting these simplified expressions into A-32, we

find that

- 177 1 e-i-/4 ( aie
II - - 2/-1 e x+l" t 1____

m m(m+-l)
m

- t' 1+xE) / 1+ +i

+ _ - 1 i

1+ x-1 2Vi- t
m( m+)

12 1 +(_ 2

_a1_e ale

1-1) --- 1)+ 2(- ) 11 +1) 2 1+1)+2-1
m m m mm m m m

2 x 2 1 +(_l 2-it(l+ 1i) +(I- )  -it(1- ) -)

b1 e m m be m m

+ 1I221m_+2 x A67(1+!) 2 1 +1)+ 2 ( 1- )1- ) -1)+ l -L))

Now the first part of this expression can be simplified as

follows:

1 = 1 A68
x+1 x+1

m
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I-------- ---

1 A69
m'+1-x- 1mZ+1

m +1 A70
nv'-x

1 x A71

And the second part can also be simplified

1 A72
1+ x-1 m'+l+x- A7

= 2+ A73

- A74

1+Tm

If these simplified expressions are substituted into A67, the

result is

Ii ___ _ 1 e-iTr/4 rT a ex

2 ri - t ( I+ 1 \ -x-it(__ aei(~)21~

I+b-e-) /)I+ 1--1
/ 2/u 2tbV e

m
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1 2
-it((1-) +( 1-) ) 1 -2

+ ble an b le 1 1 A75

(1+ ) (-! +'r+1 x  (1m-) (1 - 1-a

Aftr W fe signmputin an caclatos it MIs

seen that

1 )2/1+ 1-/11+

12 2 1

e + e

(11)I+r 1 1+ X 1\ )( i +. 1 L)A7

m mm, m ( m W,-m

-i 1 2 i - i -

-I I blee

1x11S -it(1 -ml- ) i t  m - it( 2)2 i ( 1 x

+bl e -e-it - + blee A7

(1+1) (1++--)
In m m in I

The stationary phase point contributions are seen

immediately to be equal to

alF 2 (x)+blG2(x) A77

In the end point contributions, the denominators must
1

be approximated and terms of I or higher order be neglect-

ed. When done, the end point contributions appear as
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- t1 i -

+ 1 ale Me m +ae Me

b e e m) be m e 1+ + c,_x(I (+X) I_1}A78

m m m m

If

4 (.4)2A79

then these contributions are approximately equal to

a1F1 (x)F1 (1)+alGl(x)F1 (-l)+b 1 Fl(x)Gl(I)+blGl(x)Gl(-l) A80

And finally,

11 = alF 2 (x)+b 1G2 (x)

+a1(F1(x)FI(l)+GI(x)F1 (-I) )

+b1 (Fl(x)Gl(I)+GI(x)GI(-l)) A81

The second term in the sum of integrals is now con-

sidered as 12
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-it(Y-X) 2

1 2 r, ,'Tr f e m (a2F2(y)+b 2G2(y)) dy

V .'lt7f f e 21t 1 -''

-1

b 21 e-
2 -/+ dy A82

2,71 Mrt 1 +4

Considering the first term of this expession, it is seen

that

q(y) -1A8 3

j y)2+ 1_y,84
P(Y =(Ym +1+1 m A8

p'(y) = 2(y-.?)- 2 (1-4-2 ) A85
m 2(1 mm

p'"(y) = 2+ 2 A86
m4

And solving for yo it is seen that

0= YO( 1  
1 )(1 ) A87
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0 Yo X + A88m2(1+1 ) m4 (1+ml_)

Yol+ 1 1 x + 1 A89mYOG+m1__/u~T) - 12(lmT 8

( m (17

and

Y 0 x + __ A90
mo(1+n1+,+(1+1

m

Substituting these expressions into A82 , the result is

that the first part of 12 is

-UTi x 2
a2T-[e t((y-) +-(1-yo) 2)

a2 _T- _-_- - a+ /2 e ti 1 +r

2 Vil/ 
i

n+ 1 1lb 2
22 (1-

2
V - Ml- 4 (I ) 1 m 2 V1lr (--r)

e t( i )2+ A 1

(11 2

em

m 2 (1+ 00
t(_1_1 2+ 1 10



Considering the second part, it is seen that

q(y) A92

p 1+m..2 ) +1 (+X 2 ) A923
x 1 m

I ' F
m

p'(y) = 2(y-X.) + 2 i 1 +.~ 9
m 1+l (1+-)A9

p'-(y) = 2+ 2 A95

Solving for Yo ,

SYOx+1 1 (1+4_) A96

m  m

i xl 1 y 9
0 = Yo- y 0 A97

m T1 m 4(1+ 1

++ A98

4 (1+=) m 2(14 -1)

and finally

Yo = m + 11 A99
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Substituting these expressions into A82 it is seen that

the second part of 12 is approximated by

-4 T E 7 7T / I * T T ~ 2  F e i / 4 T2/v-rrt L 1" ( i (+1 )

1 + _ 1/Tt 7  V

Fm

e mb e1 x +2 1 (1

m m1+ 1+

A 100

Combining the first and second terms the result is the com-

plete approximation to 12 , or

12 _/T.1+1/m /r 1 iT Tr

2 45- t(l+ 1

S -i +ty x/ i+I)

a2 e 4 em m m

m
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-r .. tf.

-11 it( (yo- !) 2+( IO2 +1 )

+b2 e  4 e V 17M V- tr

1 i a2 em
xvlr 2 (12)

m
a~2

x 2 1+ m

b2 em

2(1+-T (-r) - r l l 2 (11 ) l- ml_)1

-~~~ (1+1x - - - I

+ 1x 2 11

m

1 1+1

b2 e in AF

The denominators of the stationary phase point contribution

terms must be simplified:

In the first term,

" m --  m 2( + ml-- 1 -lmTA 0
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jjj*+ m~i~ (+~i~ F)/A103m+ 1 ( 11lO

S i (x -r + )' 1 A104

1 x 1
1= A105

1 + m 1

=( - m 11 A106

And in the second term,

1 / A107

1 + (- X - (1-) ( I+i. - 1

1

= (I+ - -+ i A108

I x 1

(I + 1 + x- -m4+mL) A109
Fq~~ ~ -+Mr T rFT-

+m

= (1 + X) 1 A110
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Now, considering the argument for the exponent in the first

part, it is seen that

(Y - +A -
+( 1i ( + 1 1'

1 _x 1 2

x _L_+- --____ mm .n 1
l+',m4i\ . .

1 ,_____ __ ._ _ +

m, m 1= )1 m1

Al13. 1

The first half of A113 is

1 1 ) 1

__ __ __ _ +m___ A112m 1+ 1 m 1+1 7

_ _ _ _ _ _ _ 1/

1 1

mm

105
A1

The irsthalfof A 13 i

.. ... . .X ) 2-



1+ + 4) A115

= + + X-2-)( 1 1\ A116

m m/
mm(.x x x < 2

= + + 4 - (I+ -+ -))1+1/mL+1/m) A117

I (i 
A118

,- 1 first half

And the second half is

2

1 1 1 A1201 1  I 1 I1~ ~ -- T+ - 1/mw 1+1 1 1+-1 A2

-1 mT

1 + A121

l+ m41+1 1-r 1 1 ) 1)A
mz" m 4\ m 1

1 1. -- lm- xI 1 2 1i 2
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1 Xi5r 1+1/Mn2  2 A21 /  \ 1-+-Im 1' J
-+m / 21+1/m

2 41/ A123

+ 

2

+ I A124"' I + + m 1

the total argument is

. . . . +(1+ I )(1- 7 ) - -A125

+ + (; A+126

F mmm

1_ X

A127

i i

Considering the argument for the exponent in the second half,

11 1(( - 1z 1 1
m #6\ mi

+ 1 1 +1 __ X 14 1;- A128
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Considering the first part of this,

x 1+1 1.~ ~jj -7 1 x
1 -MiI A1291+ 1 1+1 1 - m

m iv 1

m

x +x 1 1
- M + . x A130

1 11 m
m-r i -+ i

+ x 1 x 22 2

£m + X - x m x "- l l-- l--2 _
,7 __ _X F T2 A132

m mI

1 A133

+-+-
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Considering the second part, it is seen that

2

1 1  1 + 1 m-r A136

+-z 1+ 1 +
m m m

2 1 + + --- )

1) + 1 + x A137

+jj~I l1+ ++~ - _

12

1 x 2 ( 1X.2 A138
1 1+

1+1 (1M) ( +1+1)A

1 F +''jl

Then the sum of these, or the complete exponential argument,

is

-- (1 + X  + (1+1)( m A140
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S 1 1 )IX )2( 1 2 A141

1 1X 2/ 1 + 1 + IA142

Thus the stationary phase point contribution simplifies to

V-T-m /---T 1 _ _ _

m 1+1

-TT.it 1

+ b 2e e _+1/m+1/M2 14 3

i(i+ ) (i+

1 1+1/re 1+1/M 2 +1/M 4

1 1

{ape e
x
7

4 mm
+b2e e 1+ A144
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i i / 1+-
_________4 amtt(1T M

-IT/T l+/m'+l/m a2e e

2 Tv. -t - -

- -it((r , tm- +X2/ 1+1

+ b 2 e e A145

mJITr

-lin

And this is seen to be, since e 4 T

a2F3(x)+b 2G3 (x) A146

Now, considering the end point contributions, the denomin-

ators are expanded and the 2's are factored out to get

x it (1- l )2

Vf-7F II+e e74
-Vl I/m it/ I -a-

)  m m2+1

_it(l+X) 2  it 1 2 X 2 it 1+ 2
S -t-(+ --- ) -it 1 1 1+ -'

a2e e + b2e e

1ii~(i..----(+-- (12)(X 1 1(1+ml-)(-1- mX m_ ( 1+ ml_ )  (l+ml_ )(l_!+ + j( ,,,)

m m rnl +1m

_it(1+X) 2 i (1_

b2 e e 1
+A147

1 _x+ 1 J(- m)

Once more in the denominators, terms of I/m or higher are
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neglected, and it is seen that the end point contributions

are it(1-) t 1  I

m 1+-2 1
1 +1 ' it a2e e 1

4 Y9-T t t

m 1 1 x
a.2e e + b2 e e

M) - it (1+)

1t 1

+b2e e jA4+x2 A148
1I + 1 - -

The outer constant is seen to be

- _ _ _ A149
4it ( - 2 vi t) 2

and there the endpoint contribution is approximately

a2 F1 (x)F2 (1)+a 2 G1 (x)F2(-1)

-b 2Fl(x)G 2( 1)+b 2G1(x)G2 (-1) A150

Thus it is seen that, after adding,

I + 12 alF 2 (x)+blG 2 (x)+a 2 F3 (x)+b 2 G3 (x)

+ F1 (x)(a 1 Fl(1)+b 1 G1 (1) + a2F2 (1)+b 2 G2 (1))

+ G1 (x)(alFl(-1)+blGl(-1) + a2 F2 (-1)+b 2 G2 (-1))
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From this it is concluded that

N

2: f{a nFn+l(x) + b nG +l(x)}
n=1

N
+F I(X) E [anF (1)+bnG n(1)}

n=1

N
+G 1(x) E fa nF n (-)+b nG n (-l) A152

n=1

And in turn, adding the 10 term, it is had that

1 -i t(y4. )

VT7 f e (IEanFny)b Fn()1d

N

1 1+ F 1(x) + G 1(X) anFnlx 1~~
1' n=a1 nix n ~i)

N
+ G 1(x) E [a F(-I) + b G(-1)1 A153

n=1
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Appendix B

This appendix simplifies the definite integral pro-

duced by assuming in 2.1.16 that a2 is effectively in-

finite.

O ikgX 2+gXi2 2xix] ei~ i X2x-2

00 Ak gx 2 g 2  -2xjXjgxjX2+g 2 -.2xx

dx ' 82

. ik 2 "2x+
2LI 12 x 1x2 2)x'[g2(x 2+xd)j

fe dx B3

71 122 2f 1 ( Y i

The square is completed in the exponent by adding and

subtracting b 2/4a , or

-e0

1k(x-+x)

L 4g1  dxAB
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ik 2 22 ik x '+x21 (x' +x 2 )
2

S " g (x2 +x Xl _ 2 2 L 2

2- e jl e dx' B5

ik +x2) ik (x +x2) 2  -ik x2x2
L 2  

2 ) e 2g fe L 2 J dx B6

If

K B7

and
x I+x2v -- 2  2 B8

then the result is

dv = v/g7 d x B9

ikr (x 2+X2 ik (x,+x2) 2  i - V2
-T- 1 2 2L 2g, e d 1

e e f dV BIO

Similarly letting

/FV = w Bil

dw = v/dV B12

the result is

ik x2+x2) ik _x__2 2

e -7-g 2 2 e 2L 2g, 1 1+i
e - -eeB13
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then

X22 Xx 2ikr2 2 2 x2 2 2 2 21
L 2 (1+2)9277 2g 1 2g, 2g1J B

- +i ____ g e B14

_ _ _ _ _ 2 L .2 g [ 1 9 2 x 2 1 9 2 ( x 2 x ) 2 2 x i -
i V171e 2gB15

which is the final kernel.
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Appendix C

This appendix simplifies the integral equation in

2.1.29 into the final form.

I -irF~g(X2+y2 )-2xyl

yu(x) f J " Vu(y) e C1
-1

Let2 -.j(m -1)X

u(x) =g(x)e C2

since

N m - F C3

then

- iTr F-Tm-x2 1 ~ i rFm ~Y2 -i7F~g(x 2+y')-2xyl

yg(x)e /1 vFg(y)e e dy

-1 C4

However, since

M = /--+ + /g-TC5

= (/'g+1T + /g- 2C6
g+1-g+1
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=2g + 2v~g+1)(g-1) C
2

= g + V/''T C8

so

m 2 9 g2 + 2 g V~T+ g 2 1 C 9

m 2+1 =2g
2+2g/g-''T- C10

2 9 gv C11

If both sides are divided by m ,or rather one by

in and the other by its equivalent, g+V/'-T ,the re-

suit is 
2+ 'C1

this can then be substituted into the integral in place of g:

m 2+1 2212 m 2m-12 M-
1/ i-rif TryFex X 2 + m l Y 2 2 X _,+ 2T -,2 _X 2l

Yg(x) = V1 ye2m-YMM Idy C13

ir7TfF(X 2 + My2 -2x Y]= Y"1fgyedy C14

1 -iff F(y--) 2

= /1F F g(y)e dy C15
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Appendix D

List of program BARC employing the expressions develop-

ed in Chapter III and IV.

119



PROGRAM BARC(INPUT,OUTPUT,TAPEP=OUTPUT)
REAL QAG,YSUD(5 ),.SUPN(UI) ,.TE'NS i1NO)
COMPLEX EYE,COEF(U) ,A;S1),LAZ:A'.1)
COMPLEX CL(51),c'Y:.r(51),CD ",)' 1,A'2,£'Y[
COMPLEX FIELDX, C(IO ),-'GBN,>..: ,x,£c:"
DIMENSION L-2EL(17),3TC:-X(1C0,C) ,:Dx51),PLOCON(51)
DIMENSION FUNVAL("0,410),PLOFUI.C,10)
DATA LABEL/17(ICH

C
C
C THIS PROGRAM COMPUTES !:ESONATOR NODE EIGEt.Vt1.UES AND
C SUBSEQUENTL EVALUATES !;T-NSITY VALUES FOP POINTS
C ACROSS THE OUTPUT PLAN-"E OF A ST!NIP LASER RESONATOR.
C THE PROGRAM DEALS W!Tl EITHER A c..'RE OH LOADED
C CAVITY, USER'S PRE7F!..EN!CE.
C -OUTPUT CONSISTS OF AN EIGE:VALUE LIST, WITH PHASE
C AND MAGNITUDE, FIFLD VALUES FOR ;. CELECIED ;NODE
C EITHER ON OR OFF T!E t2RHCR, PLOTS OF FIELD SEIFS
C FUNCTIONS OR WEIGHTIlG CONSTANITS, AND PLOTS OF IN1TENSITY
C ACROSS THE OUTPUT PLANE WITH EITHBE LII, TTED OR EXTENTED
C RANGE.
C COMPILED CODE NEEDED AROUND 110000 OCTAL TO LOAD.
C
C INPUT QUANTITIES ARE AS FOLLOWS:
C
C MAG = CAVITY MAGNIFICATION
C NEQ = EQUIVALENT F.ES:EL NUMIER
C MTEST1 = FIELD SOLUTION ?ARITY DE31GNATOR
C NBIG = DESIRED "' TERW*-S IN FIELD CERIES
C CAVLEN CAVITY tE.CNGTH !IN LENGTH UNjITS FOR LOADED CASE
C GNAWT SMALL SIGNAL GAIN IN PER LENGTH
C H = AVERAGE CAVITY INTE-SITY, OR EIGENVALUE FORCING
C PARAMETER
C
C
C TO TERMINATE PROGRAM, INPUT MAG=O OR LESS.
C NOTE: EVMAG DENOTES EIGENVALUE,MAGNITUDE AND EVPH
C DENOTES EIGENVALUE, PHASE.
C
C THIS PROGRAM ALSO REQUIRES IMSL ROUTINE ZCPOLY AND PLOT
C LIBRARY CCPLOT56X. FINAL COPY, 20 OCT 1980. J E ROWLEY
C
C
C
994 FORMAT(GIO.3)

LABEL(1):10H NEQ=
LABEL(3):1OH MAG=

777 WRITE(8,999)
999 FORMAT(IHI,1X,*N';PUT G NEQ, AND PARITY: ,/)

READ *,f!AG,lEQ,N.TNSTl
IF(MAG. LE.O.) GO '0 888
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WRITE(8,88)MAG,r!EQ
IF(MrEST1.EQ.O) GO TO 8
WRITE(8,977)
GO TO 9

8 WRITEC8,976)
9 CONTIINUE
977 FORMAT(lX, *PAPITY IS ODD. */
976 FORNlAT(lX,*PAE:TTlY IS EV!. *

LABEL(5)=10H ?IGDL E
LABEL(6 )= 1OHIGE:;vALUE:

C
C MSUPN(I)=MAG**(I-1)
C MSUBN(I)=1+1/MAG**2 + ... .e./MAG**(2*'I-2)
C

HSUBN(1)=l.O
MSUPN(I)=1 .0
DO 10 I=2,51
MSUPN(I)=MAG*lSUFN(I-1 )
HSUBN(I)=MSUBN.(I-1)+1./NSUPNI(fl**2

10 CONTINUE
C

PI=2.*ASIN(1 .0)
EYE=CMPLXCO., 1.)
RTEYE=CMPLX(1. ,l. )/SQFTC 2.)

IF(RNBIG.LE.50.) GO TO 15
WRITE(8,998)
GO TO 777

15 WRITE(8,996)RN8:G
996 FORMAT(1X,*CALCULATED NBIG = ,G14.7,*INPUT INTEGER CHOICE:*,/)

READ *,NBIG
WRITE(8,979)tNDIG
WRITE(8,975)

975 FORMATM1,*TYPT 1 FOR GAIN CONSIDERATION ,/

READ *,IGAINQ
WRITE(8 ,979 )IGAINQ
IF(IGAINr.Q4rE.1) GO TO 5
WRITE(8,974)

974 FORMATClY,*I;- PUT LENGTH AND S-S-GAIN IN COMMON UNITS 11
READ *,CAVLEl,c:!:-;!T
WRITE( 8, 971 ) CAVLEN, G NAWT

C
C DIVIDE INPUT INTENSITY GAIN BY TWO TO MAKE IT THE FIELD GAIN,
C WHICH IS WHAT THIS PROGRAM ACTUALLY REQUIRES
C
C

GNAWT=GNAWT/2.
971 FORMAT(lX,*I-'PUT VALUES APE *,2Gl4.7,/)

H =SQ PT (G I:AWTNC AL E N/ A L 0G(;!A G ~5)
WRITE(8,973)H



973 FORMAT(lX,*11=*,Gli4.7,*INPUT MODIFIED VALUE OR 0 TO CONT ~I
READ *,FHVAL
WRITE(8 ,972) HVAL

972 FORMAT(lX,*It;PU7 VALUE IS : ,Gl4.7,/)
IF(HVAL.NIE.O.) H=HVA,.
GAMMA=EXP(2*CAVLEN1*CGN'AWT/(1 .+2*'H**2)))
GO To 6

5 H~l. $ GAMtNA=l.
6 CONTINUE

WRITE(8,993)
993 FORMAT(1X,*INPUT ZERO TO LIST EIGENVALUES ,/

READ *,LTEST
WRITE( 8,979) LTEST
LABEL(13)=1OH EVEN
NDEG=tJBIG+l
IF(MTEST1.EQ.O) GO TO 16
LABEL(13)=10H ODD
NDEG=NBIG

16 T=DUM1*NEQ
LABEL(14)=1OH PARITY

C
C COMPUTE COEFFICIENTS OF THE POLYNOMIAL
C P(Z):COEF(1)*Z**,N.DEG + COEF(2)*Z**(N'DEG-1) +
C COEF(NDEG)*Z + COEFU:!DEG+l)
C

COEF(1)=CMPLX( .',O.)
NCOEF: NDEG+ 1
DO 25 1=1,NDEG
AN1=RTEYE*2*SQRT(PT*T/MSUBN(I))
AN2=-T*EYE/M5-JU3.' I)
AN3=1.-l./MSUPNCI+l)
ANII=1 .+l ./MSUPN,( 11)
AN(I)=(CEXP(AN'2*A:;3* 2)/A3+CEXP(AN*2*AN4**2)/AN4)/AN1
IF(MTEST1.EQ.O) GO 70 25
ANI=CX(i.2''3 2IA3CX(N*:4*)A4IN

25 CONTINUE
IF(MTEST1.EQ.1) GO TO 27
COEF(2)=(AU!( )-i .)*GAH.MA
DO 26 I=3,,NCOEF

GO TO 666
27 DO 28 I=2,NCOEF
28 COEF(I)=AN(I-1)*GAMMA**(I-1)
C
C COMPUTE ROOTS OF POLYNOMIAL WITH If4SL ROUTINE TO
C OBTAIN THE EIGENVALUES
C
666 CALL ZCPOLY(COEF,NDEG,LAMBDA,IER)
C
C NOW ORDER THE EIGENVALUES BY SIZE
C
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IF(LTEST.EQ.O) WRITE(8,89)
1:1
DO 70 Il=2,NDEG
SIZE= REAL(LABDA())**2+AIMAG(LAMIBDA(I))**2
K: I
D0 75 J=I1,NDLG
SIZEI=REAL(LA'.:B DA(J))*2A1AG(LAMBDA(J))I*2
IF(SIZE1.LT.SIZE) GO TO 75
K: J
SIZE=SIZEI

75 CONTINUE
CDUt-zLAIM2DACI)
LAMBDA( I) LAMPDA(K)
LAMBDA (K) =CVUM
CL(I)=LAMSDAC I)
EVPH=ATANl2CAIMAG' '(CL(i)) ,REAL(CLCI)))*180./PI
SMA:REAL(CL(l))** 2+AIMAGl(CL(l))**2
SMAG: SQ RT ( A)
IF(LTEST.EQ.O) WRITE(8,333)I,LAMIBDA(I) ,SMAG,EVPM

333 FORMAT(lX,I1O,L4(014.7, lX),/)

70 CONTINUE
EVPil=ATAflRCAIMAG(LAMOEDA(L'DEG)),REAL(LAMRBDA(M'.DEG)))'180./PI
SMA=RE AL(LA::D(DE ,) ) *24rMG(L A,!DDA(NDEG) )**2
SMAG=SQR7( s.";)
IF(LTEST.EQ.O) WRITE(8,333)M'DEG,LAM:'3DACM.DEG),SMAG,EVPH

C
C NOW CALCULATE THE CONSTANTS FOR TH~E E:cINSUMX FOR A
C PRTICULAR !IODE. LCO THE'! 70 CALCULATE TiiE FIELD Af A SELECTED
C NUMBER OF POINTS FROM ZERO TO ONE
C
415 X:O.

BRIGHT=O.
WRITEC8,'997)

997 FORMAT '(1X,*I:LPUT 1 TO CALC FIELDS, 0 TO DO NEW CAVITY:*,/)
READ *,MTEST2
WRITE(8 ,979 ) M.TES-2
IF(MTEST2.E".D) GO TO 777
WRITE(8,995)

995 FOjRMAT(lX,*I!;?UT DESIRED MODE NUMDER:*,/)
READ *,MODE
WHITE(8,979)tMODE
LABEL(l5)=10H 'O D E #
ENCODE(1,9S7 ,LA3E.L(16))MODE

987 FORMAT(12,8X)
NPOINT=O
NL=NBIG
ROOT=LAf-BDA( MODE)

992 FORMAT(lX,15,lX,*POIfITS WILL BE EVALUATED FOR MODE 9,2G1l47,/)
C
C CONSIDER 1/O OPTIONS5 AND CALCULATE THE CONSTANTS FOR EITHER
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C PARITY CHOICE.
C

IF(MTEST1.EQ.1) GO TO 40
DO 30 I~l,i:L
RINDEX( I)!

30 CONST( I)= fRCOTG At! t/A)/ !AMA/AlWDEG) *ROOT/ G A1111A) *(NL- I)
GO TO 29

40 DO 41 1= 1 , NL
RINDEX( I) =

41 CONST(I)C(GAMM.A/ROOT)**I
29 W.RITE(8,cJ82)
982 FORMATlX,*INPuT 0 TO CALC INTENSITIES OVER EXPANDED RAIGE:*1 /)

READ *,JTEST
WRITE(8,979 )JTEST
ENCODEC 1O,994,LA3EL(2) ):HEO
ENCODE( 10 ,99:4 , LAD ( 4) )!AG
ENCODE( 10,990 ,rA7,7 ~') QEi2LRCOT)
ENCODE( 10,994 ))A I(2))AIMAGCROOT)
IF(JTEST.fN-E.O) GO TO '46
LABEL( 9) =10OH.! R ',R
LABEL( 10) =0rlP.A
LABEL( 11 ) = 1io:S ,kE
IF( IGAINQ. EQ. 1) IC 1 )H

LABEL(2YOHr
CALL ALLINT( AJ:;SP!CONST, T,NBIG, MTEST1,RiCOT,LABEL, H,

1 GAMMA, IGAINQ)
WRITE(8,981)

981 FORMATC X,*l(J'U 0 TO CONTINUE WITH OTHER I/O OPTIONS:,/)
READ *,JTESTI
WRITE(8 ,979 ),JT7ST1
IF(JTEST1.:HE.O) 0O TO 45

46 LABEL( 17) =1C AFROX ;"' 1
WRITE(8,980)

980 FORMAT(X,:?U PNTS FROM 0-.1 AND 0-1 TO PLOT OR PRINT:*,/)
READ *,INCX,Hi EST3
WJRITE(8 ,978 )Ixcx , MTE-ST3
WRITE(8,992)

C
C CALCULATE THE FIELD AT VARIOUS X VALUES U2UNOG THE
C CONSTANTS JUST CALCULATE D:
C FOR EVEN, FM=) 1 + CNHX
C FOR ODD, F(X)= SU, ((X)), -;HERE THE HCX)S ARE THE O!:ES
C DERIVED FOR EACHi CASE
31 NPOINTzN;POIHT+1

STOREX(NPOINT) X
SIGzCMPLXCO. ,O.)
DO 32 I=1,NIL
BN1zRTEYE 2*SQ2T( I/HU (I)
BN2=-T* EYE/H o( 1)
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BN 11.+X/MSUPI( 1+1)
HNX=(CEXP( B:j2*B**2 )/t I+C.XP( !.2*f4*2)/B 4 )/Bill

IF(MTEST1.EQ.0) GO 1O 3?
HX=(CEXP(E!:2*F)'3**2)/2:3' CEXPc.:2*3r1*2)/~tzi)/BNI

32 SIG=SIG+CO ;STI)*HINZ
IF(MTEST1.EQ.1) GO TO 33
FIELDX(f4POIINT) :H+SIG
GO TO 34

33 FIELDXWIPOINT)sIG0
341 INTENS(N;POI:;T):REA,'L(FIE-7'oX(NPOINT))**2+AIMAG(FIELDX(NPOINT))**2

IF(INTENS(,'POI'iT) .GT.2 RIGH'T) 5 EIGHT= INTENSNFOINT)
IF(MTEST3.EQ.O) GO TO 35
WRITE(8,87)X,FiL'DXC N!.-cr::T)
WRITE( 8,86 ) INTENS( POIx"T)

86 FORMAT(1,*INTENSI7Y = ,l47/
87 FORMAT(1X,*X = *,Gl4.7,* FIELD = *,2G14-7)
35 X=X+1./INCX

IF(NPOIN-T.LT.I:;CX) GO TO 31
IF(MTEST3.EQ.1) GO TO 777
WRITE(8,991 )

991 FORMAT(1X,* YPE ZERO TO PLOT CONSTANTS VS N:*,/)
READ *,tITESTC
WRITE(8, 979)!MESTC
IFMTESTC.NT.O) GO TO 38
LABEL( 9 ) =1OHCGNSTANT d
LABEL(10VZ1O'i
LABEL(11)=10H kOD(CONS
LABEL( 12)=lOhTA.NT) **2
DO 42 1=1,!!L

42 PLOCOII(I)AL'[(CON',ST(I))#*2+-AIAGCO.ST(I))**2
CALL ~RPR~~,~c~,BoLEL1-,1
WRITE( 8,984) ,'3DcE

984 FORMATC1X,*CCO!PLETFD PLOT OF CONSTANTS, MODE =*,12,/)
38 WRITEC8,990)
990 FORMAT(IX,*TYPE INDOEX CF FUNCTION~ TO PLOT OR 0 TO CONTINUE:*,/)

READ *,INDEX
WRITE(8,979) I'DEX
LABEL(9)=IOWU-!IROR
LABEL(1O)=1OUPLANE
IF(INDEX.EQ.O) GO TO 36
DO 413 I=1,It:CX

43 PLOFUN(I)=FUrNVAL(IDEX.I)
LABEL(1 1 1O{ D(UI
ENCODE(10,989 ,LA2- L(12'))2,,DEX

989 FORMAT("D-X='f,I2,'v)**2')
CALL HGRiF(STOPEX,PLOFUt:,NCX,LABEL,1,O,0)
WRITE(8,986) I:DEX

986 FOR.''AT1X, *CO:!PL-TED PLOT OF FUNCTION, INDEX =*,12,/)
GO TO 38
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36 WRITE(8,988)
988 FORMATC1X,*TYPE ZERO TO PLOT INTENSITY:*,/)

READ #,ICONT
WRITE(8,979)ICOPIT
IF(ICONT.11E.O) GO TO 45
LABEL(il )=lO'HSCALED
IF(IGAINQ.EQ.l) LAi3EL(1l)=lOH
LABEL(12)=1OH IINTENSITY
IF(IGAINQ.EQ. 1) BRIIGHT=%
DO 37 I=1,INCX

37 INTENS(I)=IN'TErISCI/BRICHT
CALL HOGRAPHCSTOREX,I:4'TEN S,IN-CX,LABEL,1,O,O)
WRITE(8,985)
GO TO 45

978 FORMAT(1X,*INPUT VALUES ARE : ,215,/)
979 FORMAT(1X,'IN!PUT VALUE IS : *,15,/)
985 FORMATOlX,*COMPLETED PLOT OF NOF.M1ALIZED INTENSITY.*,/I)
998 FORMAT(lX,*REVISE PARAMETERS SO INDEG 50')
88 FORMAT(lGX,*MAG = ,F6.2,5X,*,JEQ = ,F6.2,/)
89 FORMAT(9X,*I*,2X,*L-AMRDA(REAL)*,2X,*LAMBDA(IMIAG)I,6X,

I *EVM4AG*,11X,*EVPHi,/)
888 CALL EXIT

END
SUBROUTINE ALLINTCMAIG,MSUBN,MASUPNI,CONST,T,NBIG,MTESTI,ROOT
I ,LABEL,H,GAMMA,IGAlNQ)
DIMENSION LABEL( 17) ,XSAVE(2000)
REAL M1SUBN!(51),MSu PNC%5),IN ARGlJNPARG2,INIARG3,IUIARG4,INARG5
REAL INARG6,INARG7,IN ARG8,MIAG,IN.TENIS(2000)
REAL MINV
COMPLEX APART1,APART2,BPART1,BPART2,ALLFUN,CONST(51),ROOT,EYE
COMPLEX AFUNl,BFUN;,S?,''C,SPTD,EVEX,OUTCNi,FRESL,COISTA,CON.STB3
COMPLEX EYEFAC ,SPCON

C
C
C THIS SUBROUTINE FOLLON..S PROGRAM BARC AND COMPUTES SEAM INTENSITITE
C IN THE OUTPUT PLANE Fr,': -,-E OPTIC AXIS TO SOME DESIRED OUTER POIN
C OUTER POINT AND INTREIT POINTS FOR EVALUATION ARE I!;PUlT
C WHILE ALL OTHE-R REQUIRED QUANTITIES ARE CARRIED THROUGH IN THE
C ARGUMENT LIST AS FOLLOWS:
C.
C MAG= CAVITY MAGNIFICATION
C MSUBN= ARRAY FOR PARTIAL SUMS OF INVERSE POWERS OF MAG
C MSUPN: ARRAY FOR :AG TO SOME POWER
C CONST= ARRAY C7 CONSTANTS IN THE ASYMPTOTIC SERIES
C T= QUANTITY DEFINE'-D N ..' PER HORWITZ
C NBIG= i TERMIS I,. ThIE SERIES
C MTEST1= PARITY DESIGNATOR
C ROOT= MODE EIGENVALUE
C LABEL= PLOT LABELING ARRAY
C
C
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BRIGHT=O.

EYE=CMPLXCO., 1.)
EYEFAC=(1.-EYE)/2.
WRITE(8,900)

900 FORIIAT(11:i ,AE:TIERING EXTENDED RANGE INTENSITY SUBROUTIIE,/)
DO 10 I=1,51

10 MSPN( I) =NAG*MSUN( I)
NPOINT= 1
X=O.
WRITE(8,901)

901 FORIMAT(lX,*I:;PUT, MIN AND MAX X VALUES AND UPOINTS BETWEEN: */

READ *, XI1N, XMAX,INCX
X=XMIN

50 ALLFUN=(O.,D.)
XOMAG=X/MAG
DO 310 I=1,NBIG
MINV=1 ./t-SUPN1,( I)
EVENX=(O. ,O.)
SPNTD=(0. ,O.)
SPNTC=(O. ,O.)
CONSTA=-CDN'-ST( I) *GAMM A
CO NST B=CD t'A
IF(MTEST1 .EQ. 1) CO!:3TB=-CO:JSTA
P2PRYM=2. ( 1 .+1./ 1?I)M2B())
STAPHA=CN U~I+C!G/.5 ,P2PFYM)

INARG1=( 1 . !CA~)*?..(( I ~I)*/SX()

AALRG1=INARr.2-I,';ARFGl

APART2=CEXPCE'E*T*AARC?*(1 CS7A)(1.+MINA)

INARG6= (1 . (!.!I J :V +M!V**2)MSUIN() * .*)9P2PRYM)
BARG21 NAPG611- liARO 3
BPART2=CEXP ( EY.E*T)*(CCNK-2 ) /(1+ NV)

INARG8=(-1 . X:.G]+C1 -. V+-! EV* *2)/MsU!;(I) )**2/(.5* P2PRYM)

BARG2=INARG8-::.A-G
BPART2=CEXP(BA?G2.,YE*-.(-r-cOST)/1.- MINV)
0UTC0N=SQR-7C23U': :)PI/T / F2FPY::) /2. /?oC3

FSP0N=SQR(SU1/ PI*/2 PR YM/(2. /T.)/.G -. mSPNI

I MSUBN(I))
FRSNEG=SQRT(T/PI/P2PRYV-)*(2.*(-l.-XOMAG)-2.'(1 .d:'INV)/MSUPN.(I)/
I MSUBN(I))

IF(STAPHIA.GE.-l..A!;D.S7A?"!A.LE.1.) GO TO 130
AFNAAT*FELF'PS-YFC)AA"*FELFSIG-YFC
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IF(STAPHA.LT.1.) GO TO 200
AFUN:APART1*(FRESL(FRSPOS)+EYEFAC)-APART2*(FRESL(FRSNEG)+EYEFAC)
GO TO 200

130 AFLVN=APARTI*(FRESL( FR3?OS)-EYEFAC)-APART2*CFRESL(FRSNEG)+EYEFAC)

200 FRSPOS=SQR.T(T/PI/P2PPY' )*(2.*(1 .- XOI-'AG)+2.*(1 .+MIIlV)/MSUPli( IV
1 MSUBN(I))
FRSNEG=SQRT(T/PI/P2PRYM)*(2.*(-l.-XOMAG)+2.*(l.-MINV)/MSUPN(I)/

1 MSUBN(1))
IF(STAPHB.GE.-l..A:ID.STAPH1B.LE.1.) GO TO 140O
BFLJN=BPART1*(FRESL(i?SPOS)- EYEFAC)-BPART2*(FRESL(FRSNEG)-EYEFAC)
IF(STAPHB.LT.1.) GO TO 300
BFUN=BPART1*(FRESL(FRSPOS)+EYEFAC)-BPART2*(FRESL(FRSNJEG)+EYEFAC)
GO TO 300

1410 BFUN=BPART1 *(FRESL( FRSPCS)-EYEFAC)-BPART2*(FRESL(F.SNEG)+EYEFAC)

1 ((STAPHB-XOAG)**2+(l.+STAHB,:SuIJi))**2/MSUBI1(I))))
300 ALLFUN=OUTCO:,' ( AFU:,4+BFUII) +SPNTC+SPNTD+ALLFUN
310 CONTINUE
802 FORMAT(1,2G1LL7)

EARG1=SQRIT(T/2./PI) *2.*(1.-XOMAG)
EARG2=SQRT(T/2./PE)*2.*C(1 .-XC.AGo)
EVENX=CSQRT(EYE/2.)/R0OT*(FPESL(EARG1)-FRESL(EARG2))
IF(X/MAG.GE.-l...:ID.X/M'-AG.LE.1.) E'I-fNX~cVEN X-CSQRT(EYE/2.)/ROOT'

EVENX=EVENX*~H*G A> -!A
IF(MTEST1 .EQ.0) ALLF'.=ALLFUN+EVENX
WRITE(8 ,8o2) ALLFU:;
INTENS(lPOI~I2 z)AIt AG(ALLUN)**2+REAL(ALLFUN)IE2
XSAVE(lvUPDI:;T) =X
WRITE(8,800) tUTENS( NPOI NT) ,XSAVE(?JPOINT)

800 FORMAT(1X,2G14.7)
IF(INTENS(U1POI~jT).GT.BRIGHT) BRIGHiT=INTENS(NPOINT)
IF(IGAItIQ.EQ.1) BR:GHT=l.
IF(X.GT.Xt-'!AX) GO TO 500

NPOINT=NPOINT+1
GO TO 50

500 DO 510 1 1 ," POIN T
510 1INT ENS ( I)=IN-,E::S ( I/B RiGHT

CALL HGRAPHi(XS.AVE,INITE-!43,NPOINT,LABEL,1,0,0)
DO 600 I=1,51

600 MSU PN (I )=!l'SP,(I) / MAG
WRITE(8,904)

9041 FORMAT(lX,*COMPLETED CALCULATION AND PLOT, EXTENDED.*,/)
RETURN
END
SUBROUTINE flGRAPH(X,Y,N,ID,NO,NP,NS)
DIMENSION X(l),Y(1),ID(l) $ IF CN0.EQ.2) CALL PLOT(-1.85,2.1O,-3
IF (NO.EQ.2) GO TO 30 $ IF (NO.LT.O) GO TO 10
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CALL SCALE(X,7.,N,l) $ CALL SCALE(Y,5.,N,1)
10 CALL PLOT(0.,11.,2) $ CALL PLOT(8.5,11.,2)

CALL PLOT(8.5,O.,2) $ CALL ?LOTCO.,O.,2)
CALL PLOT(l.35,1.35,-3) $ CALL PLOT(0.,8.30,-2)
IF(ID(1).EQ.999) GO TO 25
CALL PLOT(.l,-.l,-3) $ CALL PLOT(O.,-2.,-2)
DO 20 I=1,7,2

20 CALL SYMBOL( (I+1.5)*.1,.3,.07,ID(I),9O.,20)
CALL PLOT(0.,O.,3) $ CALL PLOTC1.,O.,2)
CALL PLOT(1.,2.,2) $ CALL PLOT(O.,2.,-2)
CALL PLOT(-.l,.l,-3)

25 CALL PLOT(5.8,O.,-2)
CALL PLOT(O.,-8.30,-2) $ CALL PLOT(-5.8,0.,-2)
CALL SYMBOL(.5,-.2,.1,lD(13),O.,50) $ CALL PLOT(53,.75,-3)
CALL AXISCO.,O. ,iD(9),-20,7.,90. ,X(N+1),XCD1+2))
CALL AXIS(O.,O. ,rD(11) ,20,5. ,180. ,Y(.!+l),Y(N'+2))

30 Y(N+2)=-YUJ;+2) $ CALL LINE(Y,X,N,1,.'1P,NS)
Y(N.2)=-Y(fl+2) $ CALL PLOT(l.85,-2.10,-3)
RETURN $ END
SUBROUTINE AXISCXO,YO,L,NC,RL,ANIG,RMIN,DR)
DIMENSION L(1) $ A=A,:G*3.1Ll159/180. $ DX=.l*COS(A) $ DY=.1*SI,.(A
IC=ISIGN(1,NC) $ NNC=IAEPS(NC) $ R=.l S N=i $ X=XO $ Y=YO$

10 CALL PLOT(X,Y,3) $ X:X+DX Z Y=Y+DY $ CALL PLOT(X,Y,2)
CALL PLOT(X-.21*DY*rC ,Y+ .211,x* C,2)
IF(N.EQ.5) CALL PLCT(X-.42*D'-*C,,+.UI2*DX*IC,2)
IF(N.EQ.10) CALL PLOTCX-.7G*Dy*IC,Y+.70ODX*IC,2)
N=MOD(N,10)+1 $ R=R+.1 S !F(R.LT.RL) GO TO 10
A=ANG-(IC+1)*45. $ DX=1O.*DX $ DY=1O.*DY
C=.-.175+.125*IC $ D=.19+.35*IC

-X=XO.C*DX-D*DY $ Y=YO+C*DY+D*DX
R=AMAX1 (ABS( FNIIN),ASS(IN!!'+DR*RL) ) $ R:ALOG10( R)
IR=INT(ABS(R)) $ LF(R.LT.O.) 1F--(IR+l) $ IR=IR-MOD(IR,3)
Rl=RMItN/10.**IR $ DR1=DR/1O.**IR $ R0O.

20 ENCODE(7,1O1,S)Rl $ CALL SYMBOL(X,Y,.O7,S,A,7) $ Rl=R1+DR1
X=X+DX $ Y=Y+DY $ R:R+l. $ IFCR.LE.RL) GO TO 20
R=CRL-.l*NINC)/2. $ C=.l+.5*IC
X=X04R*DX-C*DY $ Y=YO+R*DY+C*DX
CALL SYMF3O[(X,Y,.l,L,ANG,NNC) $ IF(IR.EQ.O) RETURN
ENCODE(5,1O2,S) $ CALL SY:IBOL(999.,999.,.10,S,AM G,5)
CALL WHERECX,Y,A)
ENCODE(3,103,S) IR $ CALL SYMBOL(X,Y,.07,S,ANG,3)

101 FORMAT(F7.2)
102 FORMAT(5H *10)
103 FORMAT( 13

RETURN $ END
C SUBROUTINE SCALECDATA,LENGTH,N,K)
C
C = REAL DATA =N+2 DIMENSIONED ARRAY OF DATA TO BE SCALED
C zINTEGER N = NUMBER OF' DATA POINTS
C =REAL LENGTH =LENGTH OF THE PLOT AXIS (E.G. IN INCHES)
C = INTEGER K UNUSED PARAMETER INCLUDED FOR CONPATIBILITY
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C - WITH THE EQUIVALENT CALCOMP SUBROUTINE
CS
C THE FOLLOWING VALUES ARE RETURNED:
C -

C DATA(N+l) = ADJUSTED DATA MINIMUM
C DATA(N+2) = !'NICE" SCALE FACTOR IN DATA UNITS
C PER LENGTH UNIT (E.G. VOLTS/INCH)
C

SUBROUTINE SCALE(DATA,LENGTH,N,K)

REAL DATA(N), LENGTH, SF(5)
DATA SF /l., 2., 2.5, 5., 10. /

C COMPUTE THE RAW SCALE FACTOR

DMIN=DMAX=DATA(1)
DO 10 Izl,N

IF(DATA(I) .LT. DMIN) DMIN : DATA(I)
IF (DATA(I). GT. DMAX) DMAX = DATA(I)

10 CONTINUE

C EXCLUDE TRIVIAL ERROR CASES
DATA(N+I) = DMIN
DATA(N+2) = 1.0
IF (LENGTH .LE. 0.0 .OR. DMAX .EQ. DMIN ) RETURN

RAWSF = (DMAX - DMIN) / LENGTH

C RAWSF = SFMANT * 10. * SFEXP, WHERE 1 .LE. SFMANT .LT. 10

SFEXP = AINT( ALOG1O( RAWSF ) )
IF ( RAWSF .LT. 1.0 ) SFEXP = SFEXP - 1.0
SFMANT = RAWSF * 10.0 * * (-SFEXP)

C LOCATE NEXT LARGER "NICE" SCALE FACTOR

DO 20 I:I,5
20 IF ( SF(I) .GT. SFMANT ) GO TO 30

PRINT*," SCALE: SCALE FACTOR ERROR ... " $ RETURN

30 SFNICE = SF(I) * 10.0 ** SFEXP

C COMPUTE ADJUSTED DATA MINIMUM

ADJMIN = AINT ( DMIN / SFNICE ) ' SFNICE
IF ( ADJMIN .GT. DMIN ) ADJMIN : ADJMIN - SFNICE

IF ( (DMAX - ADJMINI) / SFNICE .LE. LENGTH ) GO TO 40
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C NEED TO USE THE NEXT LARGER SCALE FACTOR

IF (I .LT. 5 )SFNICE =SF(I+1) * 10.0 NISFEXP
IF (I .EQ. 5 )SFNICE =20.0 * 10.0 "SEEXP

ADJMIN =AINT CDMIN / SFNICE ) SFNICE
IF ( ADJMIN .GT. DMIN) ADJMIN ADJMIN -SFNICE

40 CONTINUE

DATA(N+l) =ADJMIN
DATA(N+2) rSFNICE

RETURN
END
COMPLEX FUNCTION CERF(ZZ)
COMPLEX ZZ,Z,A,A1 ,A2 ,Es,l1,B2,F,Fl
Z=ZZ
IF(CABS(Z) .GE.3.)GOTO3O
J=O.
A= Z
B=Z

10 J=J+1
B=-Z*Z*CMPLX( FLOAT2J-1) ,0.) '8
B=B/CMPLX(FLOAT(J ),0.)/CMPLX(FLOAT(2*J+1),0.)
A=A+B
IF(J.GE.1000)GOTO50
IF(CA8SCB/A).GE.C1.E-1O)) GO TO 10
CERF=(1 .128379167,0.)*A
RETURN

30 IF(REAL(ZZ).LT.O.)Z=-ZZ
A2=(1 .,0.)
B2: Z
F2:A2/B2
Al:Z
B1:Z'Z+CO.5,0.)
F1=A1/B1
J= 1

40 J=J+1
A=Z'Al.CMPLX(FLOATCJ)/2. ,O.jA2
B=Z*Bl+CMPLX(FLOAT(J)/2.,O.)*B2
F:A/B
IF(J.GT.1000)GOTO 50
IF(CABS((F-F1 )/F) .LT.(1 .E-10))GOTO6O
A2=Al
B2 B 1
AizA
Dl :B
F1:F
GOT040O

50 WRITE(8,99)
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99 FORMAT( "ERROR FUNCTION ROUTINE DID NOT CONVERGE "
IER:1
RETURN

60 Fl=(O.5,O.)*CEXP(..Z*Z)*F
CERF=1. 128379167*Fl
CERF=1.-CERF
IF(REAL(ZZ) .LT.O.) CERF=.-CERF

70 RETURN
END
COMPLEX FUN1CTION FRESL(X)
COMPLEX EYE,Z,CERF
EYE=(O.,1.) $ PI=2.*ASIN(l.)
Z=SQRT(PI)*X*(l.-EYE)/2.
FRESL=(1 .+EYE)/2. *CEI1F(Z)
FRESL=COIIJG( FRESL)
-RETURN $ EN4D
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Appendix E

This appendix displays plots of the intensity of the

function M n(x) for n=1 through 8 , for bare resona-

tor parameters of M=2.9 , Nf =16.4
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